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ABSTRACT
The numerical model for the analysis of the combined
convective-conductive heat transfer in the building
components has been developed. Presented model is
based on the partial differential equation for the two-
dimensional steady-state heat transport caused by
conduction and convection. The finite element
method was used to obtain the numerical solution of
the governing equation. The general finite element
formulation was derived by means of the Petrov-
Galerkin approach.

The developed computer program was used to study
one typical li ghtweight building wall construction.
The results of simulation demonstrate that the
lightweight constructions insulated with permeable
mineral wool are very sensitive to the convective heat
transfer.

INTRODUCTION
The combined heat transfer caused by conduction and
convection takes place in building constructions
loaded by the temperature and the pressure difference
between the interior and the exterior. The importance
of the convective-conductive heat transfer depends
mainly on the type of the construction and on its
tightness against the air flow.

In traditional building constructions with no cracks,
the convective component of the heat transfer is
negligible in comparison with the prevaili ng
conductive component. On the other hand, modern
lightweight constructions with a thermal insulation,
which is permeable to the air flow and which is
covered with only thin layers of plasterboards and
similar materials, are very sensitive to the convective
heat transfer.

The analysis of the combined convective-conductive
heat transfer could be based on the partial differential
equation for the two-dimensional steady-state heat
transport in a porous medium. This equation can be
expressed as
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The first term on the left-hand side of the equation (1)
represents the heat transport due to conduction, the
second term represents the heat transport due to
convection. Although it is possible to use all standard
boundary conditions for the equation (1), the Newton
boundary condition defined as
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is usually the most useful for the purposes of the
building physics analysis.

The numerical solution of the equation (1) with the
boundary condition (2) was derived using following
assumptions:

• heat transfer is steady-state and two-dimensional

• convection of air through the building
construction is caused only by pressure difference

• the air is incompressible,

• flow of air is linear according to Darcy´s Law

� �� � �= − ∇
µ

(3)

• pressure distribution is governed by Laplace
equation

� �⋅∇ =
� �

(4)

• the radiative heat transfer is not considered in the
model directly but only by means of heat transfer
coeff icient

α α α= +� � (5)

• the pressure losses of cracks are considered in the
model in a simpli fied way by means of
„equivalent“ permeabilit y of the air in the crack,
which is defined as
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and which was derived from the equality of the air
flow velocity defined by Darcy´s Law and the mean
velocity of the laminar air flow in the crack defined
as
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ANALYSIS
The equation (1) is a typical example of the
convective-diffusion equation. The search for the
numerical solution of the convective-diffusion
equation is always more complicated than the search
for the solution of the related diffusion equation. The
main cause is the convective transport term which can
introduce under certain conditions instabiliti es in the
numerical solution.

The finite element method was used to find the
solution of the equation (1). The general finite
element formulation was derived by means of the
Petrov-Galerkin process. As the Petrov-Galerkin
process is one of the weighted residuals methods, the
derivation of the finite element formulation starts
with equation
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The equation (8) is a mathematical expression of the
requirement that the residual of the numerical
solution of the equation (1) must be orthogonal to the
weighting functions Wi.

The unknown function T in equation (8) is taken as
approximation

1 2 34 5 6= (9).

The interpolation functions Ni are known functions
closely connected to the type of the chosen finite
elements.

The definition of the weighting functions Wi is very
important in this case. The approach recommended
by Zienkiewicz takes the weighting functions as

7 8 9 : ;
< =

>
?

@A A
A A

= +
+

ε

∂
∂

∂
∂B (10).

Now, if the value of ε is chosen as

ε = −C D E F G H G H
I

(11)

and Peclet number as
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=

ρ
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P (12)

then according to Zienkiewicz the numerical
oscill ations do not arise for any possible rate between
convective and conductive heat transport.

The general finite element formulation can be finally
derived from the equation (8) by means of integration
by parts and by means of introduction of the
boundary condition (2) and written as

( )Q Q Q R ST Uλ α α+ + = (13).

The conductance matrix Kλ is defined as
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the convective transport matrix Kv as
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the boundary conditions matrix Kα as

( )V b ` W Yd c c U U [\α α ρ= −∫
Γ

Γ] ^ _

and the boundary conditions vector qα  as

( )e b ` W fd c c U\α α ρ= −∫
Γ

Γ] ^
_

.

Note that the convective transport matrix Kv is
asymmetrical, which leads to the asymmetrical matrix
of the linear equations system for unknown nodal
values Ti.

The computer model „WIND“ developed by Z.
Svoboda is based on the equation (13). It calculates
the pressure field within the porous building
construction, the air flow velocity field, the
temperature field and the heat flow rate due to
conduction and due to convection.

The analysis of the numerical stabilit y of the solution
obtained by the computer program „WIND“ was
realised in two ways. The first method was based on
the comparison of the numerical solution with the
exact analytical solution of the equation
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The analytical solution of the equation (14) is
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with the value of A defined as
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The numerical solution of the equation (14) for the
value of A=4 and for various number of the finite
elements in comparison with the exact solution could
be seen in Table 1. The analysis shows clearly that
the results of the numerical solution converge to the
exact solution with increasing number of the finite
elements covering the solved area.

Table 1  Results of the exact and the numerical
solution

Distance Temperature
exact

solution
numerical solution

x [[m]] T [[K]] T1 [[K]] T2 [[K]] T3 [[K]]
0,0 1,000 1,000 1,000 1,000
0,2 0,977 0,978 0,977 0,977
0,4 0,926 0,928 0,927 0,926
0,6 0,813 0,815 0,814 0,813
0,8 0,561 0,564 0,562 0,561
1,0 0,000 0,000 0,000 0,000

Number
of

elements
--- 20 40 80

The second method of the numerical stabilit y analysis
was based on the evaluation of the functional
corresponding to the equation (1). The finite element
method is one of the variation methods which means
that the exact solution of the equation (1) obtained by
the finite element method must minimise the
functional corresponding to the equation (1). The
functional connected with the equation (1) could be
derived by means of the Guymon´s process cited by
Zienkiewicz in the following form
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where the value of q is defined as
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The building construction shown on Fig. 1 was
chosen to be analysed from the point of view of the
numerical stabilit y of the calculation results. The
boundary conditions were taken as follows:�

 interior: temperature 20 °C, pressure 0 Pa�
 exterior: temperature -15 °C, pressure 10 Pa

The initial mesh system with 580 finite elements is
shown on Fig. 2. The mesh system was refined twice
and each time the functional (18) was calculated by
means of the Gauss numerical integration. The results
of the analysis are presented on Fig. 3. It could be
clearly seen that the values of the functional decrease
with the increasing number of finite elements. This
shows that the calculated results of the equation (1)
converge to the exact solution and the numerical
stabilit y is reached.
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Fig. 1  The analysed building construction

Fig. 2  The initial mesh system with 580 elements
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Fig. 3  The calculated functional values

SIMULATION
The typical li ghtweight building wall construction has
been chosen to be the object of simulation. The
analysed construction, which is shown on Fig. 1,
consists of two plasterboards attached to the wood
frame. The space between the plasterboards is fill ed
with the thermal insulation from the mineral wool.
The material characteristics used in the following
analysis are described in Table 2.

The calculation has been performed several times:ë
 for the tight construction with no cracksë
 for the construction with only one crack in the

plasterboard on one side of the mineral woolë
 for the construction with two cracks in various

distances in the plasterboards on both sides of the
mineral wool.

Table 2  Used material characteristics

Material Permeability
[[m2]]

Thermal conductivity
[[W.m-1.K-1]]

plaster-
board 1.10-12 0,220

mineral
wool 1.10-9 0,040

The width of the crack has been chosen as 1 mm. The
pressure difference loading the construction has been
taken as 10 Pa and the temperature difference as
35 °C (the same values as in the case of the
previously described numerical stabilit y analysis).

The influence of the convective heat transport
through the crack has been expressed for each
analysed construction by means of the convective
linear thermal transmittance according to the
following equation

ψ ì í î ïð ð ñ òó ∆ Φ
=

−
− ⋅ (20).

The linear thermal transmittance is used in ISO and
European standards as a value showing the influence
of a thermal bridge on the heat loss. In this paper, the
crack is taken as a „convective bridge“ and the
convective linear thermal transmittance is used to
show the influence of the air flow through the
„convective bridge“ on the heat loss, which can be
finally expressed as

ô õ ö ÷ ø ÷ù ù ú= ⋅ ⋅ + ⋅ ⋅∑∑ ∆ ∆∆ψ û (21).

The convective linear thermal transmittance is always
related to the length of the crack and to the operating
pressure difference.

The results of the convective linear thermal
transmittance calculation for the pressure difference
of 10 Pa are shown in Table 3 and on Fig. 4.

Table 3  The results of calculation

Description Convective
linear thermal
transmittance

ΨΨv,10 Pa   
[[W.m-1.K-1]]

Air flow
into the
interior

V
[[m3s-1m-2]]

no crack 0,009 2,9.10-5

crack on one side of
the construction only 0,017 5,4.10-5

cracks on both sides
of the construction:
• opposite each other
and in distance of:
• 50 mm
• 100 mm
• 200 mm
• 500 mm

0,367

0,342
0,249
0,174
0,094

20,9.10-5

20,8.10-5

19,8.10-5

19,0.10-5

15,0.10-5
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Fig. 4  The convective linear thermal
transmittance for the difference of 10 Pa
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The pressure fields, the air flow velocity fields and
the temperature fields for the tight construction, for
the construction with the crack on one side of the
mineral wool and for the construction with the cracks
in both plasterboards are presented on Fig. 5, Fig. 6,
Fig. 7 and Fig. 8.

Note the deformations of the temperature fields
which are in the cases of untight constructions caused
by the air flow through the cracks in mineral wool
coverings. Such temperature deformation is visible
even in the case of the construction with the crack in
only one plasterboard (Fig. 6) and reaches very
extensive level in the case of the construction with
the opposite cracks in both coverings (Fig. 7).

The results of the simulation show that the cracks in
the covering of the lightweight construction fill ed
with permeable thermal insulation lead to substantial
changes in the temperature distribution and
subsequently to the considerable increase in the heat
loss. If the cracks are to be found on both sides of the
construction opposite each other, the amount of
0,37 W.m-1.K-1 could be added under the
presumption of the operating pressure difference of
10 Pa to the total heat loss for every 1 m of the crack
length and for every 1 K of the operating temperature
difference.

the pressure field

the air flow velocity field

the temperature field

Fig. 5  The graphical presentation of the results
for the tight construction

the pressure field

the air flow velocity field

the temperature field

Fig. 6  The graphical presentation of the results
for the construction with the crack in one
plasterboard only

the pressure field

the air flow velocity field

the temperature field

Fig. 7  The graphical presentation of the results
for the construction with the opposite
cracks in both plasterboards
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the pressure field

the air flow velocity field

the temperature field

Fig. 8  The graphical presentation of the results
for the construction with the cracks in both
plasterboards in distance of 200 mm

CONCLUSIONS
The computer model „WIND“ could be used for the
calculation of the temperature distribution in various
types of building constructions. This work presents
its application as a tool for the analysis of one typical
lightweight wall construction.

The results of the numerical modelli ng show these
major conclusions:

• The modern constructions containing the
permeable thermal insulation from the mineral
wool are very sensitive to the convective heat
transfer.

• Any crack in the mineral wool covering could
cause the air flow into the thermal insulation and
subsequently the essential modifications in the
temperature field.

• The result of such temperature distribution
deformation is the considerable increase of the
heat loss through the construction.
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NOMENCLATURE
A area of construction [m2]

b one half of the width of the crack [m]

ca thermal capacity of the air [1010 J.kg-1.K-1]

h size of an element in the velocity direction
[m]

k permeabilit y of the porous medium  [m2]

ka „equivalent“ permeabilit y of the air in the
crack [m2]

Kλ conductance matrix

Kv convective heat transport matrix

Kα boundary conditions matrix

L length of the crack in the direction of the air
flow [m]

l width associated with the U value [m]

lv length of the crack associated with the
convective linear thermal transmittance [m]

Ni interpolation functions vector

p pressure of the air  [Pa]

qα boundary conditions vector

T temperature  [K]

Ti vector of unknown temperature values [K]
L

known temperature at element boundary [K]

ti interior temperature [K]

te exterior temperature [K]

U U value, thermal transmittance coeff icient
[W.m-2.K-1]

u velocity component in the x axis direction
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M velocity vector magnitude
N
v velocity vector of air flow  [m.s-1]

v velocity component in the y axis direction

vn velocity component normal to the boundary

O mean velocity of the laminar air flow in the
crack [m.s-1]

V air flow rate into the interior through the
construction [m3.s-1.m-2]

Wi weighting functions vector

α heat transfer coeff icient [W.m-2.K-1]
The values of 8 W.m-2.K-1 for internal surface
and 23 W.m-2.K-1 for external surface were
used in the presented study.

αc convective heat transfer coeff icient [Wm-2K-1]

αr radiative heat transfer coeff icient [W.m-2.K-1]

Γe boundary of a finite element

Φ heat flow rate [W.m-1]

µ viscosity of the air [1,7.10-5 Pa.s]

λ thermal conductivity [W.m-1.K-1]

Ωe area of a finite element

ρa density of the air [1,2 kg.m-3]

Ψv,∆p convective linear thermal transmittance for
given pressure difference [W.m-1.K-1]

∆t temperature difference [K]

∆P pressure difference between the inlet and
the outlet of the crack [K]


