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ABSTRACT 

The following paper is focused on the effects of the 
combined water vapour transport caused by diffusion 
and convection. The governing equation of this 
transport mechanism is presented together with the 
possibilities of its numerical solution by means of the 
finite element method. 

In the second part of the paper, a typical slope roof 
construction with thermal insulation between the 
rafters and with small leakages in the water vapour 
barrier is analysed using 2D calculation model. 
General conclusion discussing the significance of the 
combined diffusive-convective heat and water vapour 
transport is included in the final part of the paper. 

INTRODUCTION 

The air infiltration through the permeable building 
constructions or through the cracks in them is 
important factor, which can considerably affect their 
hygrothermal performance. The thermal effects of 
this transport mechanism include deformation of the 
temperature field in the construction and significantly 
increased heat loss. The moisture effects are even 
more important because the air flow is able to 
transport high amounts of water vapour into the 
construction and subsequently cause interstitial 
condensation with very high condensation rate. This 
can even lead to serious damage of such permeable 
and/or leaky constructions. 

The analysis of the combined diffusive-convective 
water vapour transport can be based on the partial 
differential equation for the two-dimensional steady-
state water vapour transport in a porous medium. 
This equation can be expressed as 

02 =ρ∇⋅−ρ∇
µ vv v
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   (1). 

The first term on the left-hand side of equation (1) 
represents the water vapour transport due to 
diffusion; the second term represents the water 
vapour transport due to convection. The Newton 
boundary condition for the equation (1) can be 
defined as 
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The numerical solution of the equation (1) with the 
boundary condition (2) was in the presented paper 
derived using the following assumptions: 

• water vapour transport is steady-state and two-
dimensional 

• convection of air through the building 
construction is caused only by pressure difference 

• air is incompressible 

• flow of air is linear according to Darcy´s Law 
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• pressure distribution is governed by Laplace 
equation 

02 =∇⋅ Pk     (4). 

ANALYSIS 

The equation (1) belongs to the family of convective-
diffusion equations. It is always more complicated to 
find the numerical solution of such equation than to 
find the solution of the related usual diffusion 
equation. The main cause is the convective transport 
term, which can - under certain conditions - produce 
instabilities in the numerical solution. 

The finite element method (FEM) was used in the 
presented paper in order to obtain the numerical 
solution of the equation (1). The general finite 
element formulation was derived by means of the 
Petrov-Galerkin process, which is one of the 
weighted residuals methods. Therefore the derivation 
of the finite element formulation starts with the 
condition 
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which is also the mathematical expression of the 
requirement that the residual of the numerical 
solution of the equation (1) must be orthogonal to the 
weighting functions W.  



The unknown function ρ
v in equation (5) is taken as 

approximation 
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While interpolation functions Ni are known functions 
depending on the type of the chosen finite elements, 
weighting functions Wi must be derived from the 
following equation recommended by Zienkiewicz  
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Now, if the value of ε is chosen as 
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and Peclet number as 
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then according to Zienkiewicz numerical oscillations 
do not arise for any possible rate between convective 
and diffusive water vapour transport. 

The general finite element formulation can be finally 
derived from the equation (5) by means of integration 
by parts and by means of introduction of the 
boundary condition (2). The final general FEM 
formulation is 

( ) ββ =ρ⋅++ qKKK ivVD ,   (10). 

The diffusion matrix KD is defined as 
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the convective transport matrix Kv as 
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the boundary conditions matrix Kβ as 

( ) Γ−β= ∫
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and the boundary conditions vector qβ  as 
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Note that the convective transport matrix Kv is 
asymmetrical, which leads to the asymmetrical matrix 
of the linear equations system for unknown nodal 
values ρv,i. 

The field of partial water vapour densities ρv,i 
calculated from the equation (10) is correct only in 

the case with no interstitial condensation – in other 
words, when the following condition is met in any 
part of the solved area 

satvv ,ρ<ρ     (11). 

Otherwise, the water vapour condensation occurs in 
the building construction and the calculated field of 
partial water vapour densities is deformed according 
to this fact. In the presented paper, the simplified 
iteration process was used to obtain the area of water 
vapour condensation and the final field of partial 
water vapour densities. This iteration process is based 
on the condition  

satvv ,ρ≤ρ     (12) 

which can be expressed also as requirement that the 
partial water vapour density cannot in any part of the 
construction exceed the saturated partial water vapour 
density. The iteration process itself can be 
programmed in the following steps: 

• at first, the field of partial water vapour densities 
and the field of saturated partial water vapour 
densities are calculated separately and compared 
– the result of comparison shows if the water 
vapour condensation occurs in the construction 

• if there is condensation, the maximum difference 
between partial water vapour density and the 
saturated partial water vapour density is found 

• the value of saturated partial water vapour 
density is then introduced as Dirichlet type of 
boundary condition in the mesh node with this 
maximum difference and the whole calculation of 
partial water vapour density field is repeated 

• the newly calculated field of partial water vapour 
densities is afterwards compared with known 
field of saturated partial water vapour densities in 
order to find out if there are still mesh nodes 
where the partial water vapour density exceeds 
the maximum limit 

• if yes, the maximum difference is found again 
and the calculation of partial water vapour 
density field is repeated with all the existing and 
new Dirichlet conditions. 

The iteration process continues until the condition 
(12) is fulfilled with chosen accuracy in all mesh 
nodes. Convergence of this iteration is reliable and 
quite rapid. The result of the iteration process is the 
field of partial water vapour densities in the 
construction with interstitial water vapour 
condensation. More common field of relative 
humidities can be calculated from  
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It can be seen from the already described methods 
and equations that the temperature field must be 
determined at first because the saturated partial water 
vapour density is calculated using equation 

( )θ+⋅
=ρ
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p   (14). 

The temperature field must be of course calculated in 
the same conditions of combined convective-
conductive transfer as the water vapour density field. 
The governing equation for this heat transport 
mechanism can be expressed as 

02 =θ∇⋅ρ⋅−θ∇λ aacv
r

  (15). 

The numerical solution of the equation (15) by means 
of FEM is similar to already described numerical 
solution of the equation (1) and can be found in 
already published papers (e.g. Svoboda, 1999, 2000). 

The developed computer model „WIND2D“ is based 
on the FEM solution of the equations (1) and (15). It 
calculates the steady-state air pressure field within 
two-dimensional porous building components, the air 
flow velocity field, the temperature field and the 
relative humidity field. 

The analysis of the numerical stability of the solution 
obtained by „WIND2D“ was realised using the 
comparison of the numerical solution with the exact 
analytical solution of the equation 
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with boundary conditions 
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The analytical solution of the equation (16) is  
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with the value of B defined as 
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The numerical solution of the equation (16) for the 
value of B=5 and for various number of the finite 
elements in comparison with the exact solution can be 
seen in Table 1. The analysis shows clearly that the 
results of the numerical solution converge to the 
exact solution with increasing number of the finite 
elements covering the solved area. 

SIMULATION 

A typical slope roof construction with thermal 
insulation between the rafters has been chosen to be 
the object of simulation. The layers of analysed 
construction are described in Table 2. 

Table 1 
Results of the exact and the numerical solution 

 

PARTIAL VAPOUR DENSITY 
DISTANCE 

EXACT NUMERICAL SOLUTION 

x [m] 
ρρρρv 

[kg/m3] 
ρρρρv,1 

[kg/m3] 
ρρρρv,2 

[kg/m3] 
ρρρρv,3 

[kg/m3] 
0.0 0.00200 0.00200 0.00200 0.00200 
0.2 0.00198 0.00198 0.00198 0.00198 
0.4 0.00191 0.00191 0.00191 0.00191 
0.6 0.00174 0.00172 0.00173 0.00174 
0.8 0.00127 0.00124 0.00125 0.00126 
1.0 0.00000 0.00001 0.00001 0.00000 

Number of 
elements 

--- 40 80 160 

 

Table 2 
Layers of the analysed construction 
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Roof tiles 
Ventilated air layer 

Not considered in calculation 

Waterproof barrier 0.1 0.21 0.02 10-12 
Mineral wool 160 0.04 0.18 10-9 
Vapour barrier 0.1 0.21 1.44 10-17 
Mineral wool 40 0.04 0.04 10-9 
Plasterboard 12.5 0.22 0.11 10-12 

 

There is no major risk of huge interstitial 
condensation in this model construction if the water 
vapour barrier is tight. On the other hand, if the water 
vapour barrier is perforated, the situation can be quite 
different. Let us suppose that in the plasterboard and 
in the water vapour barrier are relatively small 
openings 1 mm wide – and to be more realistic – 
these openings are located in the distance of 500 mm. 
The safety waterproof barrier is considered tight 
(with loosely overlapped partial layers). 

The calculated relative humidity fields in this model 
construction for the air exfiltration caused by various 
pressure gradients are shown on Fig. 1. The results 
are valid for the external air with temperature -15 ˚C 
and relative humidity 84% and for internal air with 
temperature 21 ˚C and relative humidity 50%. 

The water vapour condensation zone for the pressure 
difference of 40 Pa is very interesting. The apparent 
reduction of this zone in comparison with the zones 
for the lower pressure gradients is caused by higher 
heat transport through the leaky construction (Fig. 2). 
However, this higher heat transport does not lead to 
analogous reduction of water vapour condensation  
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Figure 1  Relative humidity field in the slope roof 
construction – the case of air exfiltration 
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Figure 2  Various fields for exfiltration through the 

slope roof caused by pressure gradient of 40 Pa 

 

rate as can be seen in Table 3 – the only effect is the 
displacement of the condensation zone to colder parts 
of the construction. 
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Figure 3  Relative humidity field in the slope roof 
construction – the case of air infiltration 

 

While the air exfiltration (from interior to exterior) 
causes obvious enlargement of the water vapour 
condensation zone, the air infiltration (from exterior 
to interior) leads to more subtle changes in the extent 
of the condensation zone (Fig. 3). Nevertheless, the 
water vapour condensation rate rises up in both cases 
as the pressure difference gradually moves to higher 
levels (Table 3 and Fig. 4). 

 

Table 3 
Water vapour condensation rate 

 

WATER VAPOUR 
CONDENSATION RATE 
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0 Pa 1,08.10-7 
1 Pa 1,47.10-7 1,23.10-7 
5 Pa 2,97.10-7 2,02.10-7 
10 Pa 4,71.10-7 2,93.10-7 
20 Pa 7,60.10-7 4,50.10-7 

Untight slope 
roof 

40 Pa 1,23.10-6 7,20.10-7 
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Figure 4  Water vapour condensation rate 

 

Although the increase of the water vapour 
condensation rate is substantial mainly in the case of 
air exfiltration (e.g. for the pressure difference of 
40 Pa, the condensation rate is about 15-times higher 
than for the case of tight construction), it is not 
negligible also in the case of air infiltration. These 
effects are caused almost exclusively by convection 
because the increased diffusion through the openings 
leads itself to the increase of condensation rate only 
around 33% (Table 3). 

CONCLUSIONS 

The newly developed computer model „WIND2D“ 
(version 2004) can be used for the calculation of the 
temperature and relative humidity distribution in 
various types of two-dimensional building 
components in the conditions of steady-state 
combined heat and water vapour transport caused by 
conduction/diffusion and convection. 

This paper presents its application as a tool for the 
analysis of water vapour transport in a typical slope 
roof construction.  

The results of the numerical modelling show these 
major conclusions: 

• modern constructions with permeable thermal 
insulation from mineral wool are very sensitive to 
the convective heat and water vapour transfer 

• any opening in water vapour barrier and/or safety 
waterproof layer can cause the air infiltration or 
exfiltration through the thermal insulation and 
subsequently the essential modifications in the 
temperature and relative humidity fields 

• the results of such deformations in the 
temperature and water vapour distribution 
include: 

• considerable increase of the heat loss through 
the construction 

• substantial increase of the water vapour 
condensation rate and – mainly in the case of 
air exfiltration – also the enlargement of the 
condensation zone in the construction 

• higher moisture transport through the leaky 
construction caused mainly by the convection can 
easily lead in specific conditions (e.g. in 
buildings with moist internal microclimate – 
swimming pools etc.) to severe and surprisingly 
rapid damage of such construction (beyond all 
design assumptions). 

The requirement for the maximum tightness of water 
vapour barrier and other air-tight layers is therefore in 
the case of modern lightweight constructions really 
essential. 
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NOMENCLATURE 

b size of an element in the velocity direction [m] 

ca  thermal capacity of the air [J/(kg.K)] 

D water vapour diffusion coefficient in air [m2/s] 

k permeability of the porous medium [m2] 

KD diffusion matrix 

Kv convective transport matrix 

Kβ boundary conditions matrix 

Ni interpolation functions vector 

P air pressure [Pa] 

psat saturated partial water vapour pressure [Pa] 

qβ boundary conditions vector 

v  magnitude of vector of air flow velocity [m/s] 

v
r

 vector of air flow velocity [m/s] 

vx velocity component in the x axis direction 

vy velocity component in the y axis direction 

vn velocity component normal to the boundary 

Wi weighting functions vector 

β water vapour boundary transfer coefficient [m/s] 

η dynamic viscosity of the air [Pa.s] 

ϕ relative humidity of the air [%] 

λ thermal conductivity [W/(m.K)] 

µ water vapour diffusion factor [-] 

θ temperature [°C] 

ρa density of the air [kg/m3] 

ρv partial water vapour density [kg/m3] 

ρv,sat saturated partial water vapour density [kg/m3] 

ρv,i vector of unknown partial water vapour density 
values [kg/m3] 

vρ  known partial water vapour density at element 

boundary [kg/m3] 

Γe boundary of a finite element 

Ωe area of a finite element. 


