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ABSTRACT

The numericd model for the analysis of the combined
convedive-conductive hed transfer in the building
components has been developed. Presented model is
based on the partia differential equation for the two-
dimensional steady-state hea transport caused by
conduction and convedion. The finite dement
method was used to oltain the numericd solution of
the governing equation. The genera finite dement
formulation was derived by means of the Petrov-
Galerkin approach.

The developed computer program was used to study
one typicd lightweight building wall construction.
The results of simulation demonstrate that the
lightweight constructions insulated with permeéble
mineral woal are very sensitive to the mnvedive hea
transfer.

INTRODUCTION

The combined hea transfer caused by conduction and
convedion takes place in building constructions
loaded by the temperature and the presaure difference
between the interior and the exterior. The importance
of the mnvedive-conductive hea transfer depends
mainly on the type of the cnstruction and on its
tightnessagainst the dr flow.

In traditional building constructions with no crads,
the @nvedive component of the hea transfer is
negligible in comparison with the prevailing
conductive component. On the other hand, modern
lightweight constructions with a thermal insulation,
which is permeale to the ar flow and which is
covered with only thin layers of plasterboards and
similar materials, are very sensitive to the convedive
hed transfer.

The analysis of the mmbined convedive-conductive
hed transfer could be based on the partial differential
equation for the two-dimensional steady-state hed
transport in a porous medium. This equation can be
expressed as

ACPT + pye, £ Ep.Or =
p,c, p Up.UT =0 (2).

The first term on the left-hand side of the equation (1)
represents the hea transport due to conduction, the
seomnd term represents the hea transport due to
convedion. Althoughit is posdble to use dl standard
boundary conditions for the equation (1), the Newton
boundary condition defined as
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is usualy the most useful for the purposes of the
buil ding physics analysis.

-2 v.p,c,(T-T)=a(T-T) @

The numericd solution of the equation (1) with the
boundary condition (2) was derived using following
asmptions:

¢ hed transfer is seady-state and two-dimensional

e convedion of ar through the building
construction is caused only by presaure difference

e the dr isincompressble,

e flow of arislinea acordingto Darcy’s Law
v=-—L0p €)

e presaure distribution is governed by Laplace
equation

kD’ p=0 (4)

* theradiative hed transfer is not considered in the
model diredly but only by means of hea transfer
coefficient

a=a, +a, (5)

e the presaure losss of cradks are mnsidered in the
model in a smplified way by meais of
Lequivalent* permeability of the dr in the qad,
which is defined as
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and which was derived from the equality of the ar
flow velocity defined by Darcy’s Law and the mean
velocity of the laminar air flow in the adadk defined

as
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ANALYSIS

The euation (1) is a typicd example of the
convedive-diffusion equation. The seach for the
numericd solution of the nvedive-diffusion
equation is always more wmplicaed than the search
for the solution of the related dffusion equation. The
main cause is the cnvedive transport term which can
introduce under certain conditions instabiliti es in the
numerica solution.

The finite dement method was used to find the
solution of the eguation (1). The general finite
element formulation was derived by means of the
Petrov-Galerkin process As the Petrov-Galerkin
processis one of the weighted residuals methods, the
derivation of the finite dement formulation starts
with equation

J’ @D2T+paca%ﬁpiT§/Vi dQ=0 ().
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The eguation (8) is a mathematicd expresson of the
requirement that the residual of the numericd
solution of the eguation (1) must be orthogonal to the
weighting functions W,.

The unkrmown function T in equation (8) is taken as
approximation

T=NT ).

The interpolation functions N; are known functions
closely conneded to the type of the dosen finite
elements.

The definition of the weighting functions W, is very
important in this case. The gproach recommended
by Zienkiewicz takes the weighting functions as

ON, , 0N,
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(10).
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Now, if the value of € is chosen as

1
€ =coth Pe —— 11
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and Pedet number as
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then acording to Zienkiewicz the numericd
oscill ations do not arise for any possble rate between
convedive and conductive hed transport.

The genera finite dement formulation can be finaly
derived from the equation (8) by means of integration
by parts and by means of introduction of the
boundary condition (2) and written as

(x, +K, +K,)T, =4, (13).

The mnductance matrix K, is defined as

Cow, oN," ow, oN," O
Ky= [ AL L=+ bl Q,
4.0 & & o O

the mnvedive transport matrix K, as
[l T 0
K, = [ o, 0 D v D g,
do 0 o & 0O

the boundary conditi ons matrix K, as

K, = [la-vip v ar
I

)

and the boundary conditions vedor q, as

9. = [la=v,p,c,)WTdr.

re

Note that the mnvedive transport matrix K, is
asymmetricd, which leals to the asymmetrica matrix
of the linea equations gstem for unkrown nodal
valuesT;.

The omputer model ,WIND“ developed by Z.
Svoboda is based on the equation (13). It cdculates
the presare field within the porous building
construction, the dr flow velocity field, the
temperature field and the hea flow rate due to
conduction and due to convedion.

The analysis of the numericd stability of the solution
obtained by the wmputer program ,WIND" was
redised in two ways. The first method was based on
the comparison of the numericd solution with the
exad analyticd solution of the eguation
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with boundary conditions

T(0)=1, T(1)=0 (15).

A

The analyticd solution of the equation (14) is

Ax A

T(x)= el—f (16)

with the value of A defined as
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The numericd solution of the eguation (14) for the
value of A=4 and for various number of the finite
elements in comparison with the exad solution could
be seen in Table 1. The analysis shows clealy that
the results of the numericd solution converge to the
exad solution with increasing number of the finite
elements covering the solved area

A 17).

Tablel Resultsof theexact and the numerical

solution
Distance Temperature
exact numerical solution
solution
x[m] T[K] | Ta[K] | To[K] | Ts[K]
0,0 1,000 1,000 1,000 | 1,000
0,2 0,977 0,978 0,977 | 0,977
04 0,926 0,928 0,927 | 0,926
0,6 0,813 0,815 0,814 | 0,813
0,8 0,561 0,564 0,562 | 0,561
1,0 0,000 0,000 0,000 | 0,000
Number
of 20 40 80
elements

The seaond method o the numericd stability analysis
was based on the evaluation of the functional
corresponding to the egquation (1). The finite dement
method is one of the variation methods which means
that the exad solution of the equation (1) obtained by
the finite dement method must minimise the
functional corresponding to the eguation (1). The
functional conneded with the equation (1) could be
derived by means of the Guymon's process cited by
Zienkiewicz in the following form

(18)
—J’q(a ~v,0,¢, )1 T> =TT )dr
!
where the value of g is defined as
~Pula, ux+v
g=e * () (19).

The building construction shown on Fig. 1 was
chosen to be analysed from the point of view of the
numericd stability of the cdculation results. The
boundary conditi ons were taken as foll ows:

B interior: temperature 20 °C, presaure 0 Pa

W exterior: temperature-15°C, presaure 10 Pa

The initial mesh system with 580 finite dements is
shown on Fig. 2. The mesh system was refined twice
and ead time the functional (18) was cdculated by
means of the Gaussnumericd integration. The results
of the analysis are presented on Fig. 3. It could be
clealy seen that the values of the functional deaeese
with the incressing number of finite dements. This
shows that the cdculated results of the eguation (1)
converge to the exad solution and the numericd
stability isreaded.

plasterboard 13 mm
mineral wool 120 mm

plasterboard 13 mm 1 mm wide crack
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Fig. 1 Theanalysed building construction

Fig. 2 Theinitial mesh system with 580 elements
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Fig. 3 Thecalculated functional values

SIMULATION

Thetypicd lightweight building wall construction has
been chosen to be the objed of simulation. The
analysed construction, which is $own on Fig. 1,
consists of two plasterboards attached to the wood
frame. The space between the plasterboards is fill ed
with the thermal insulation from the mineral wodl.
The material charaderistics used in the following
analysis are described in Table 2.

The cdculation has been performed several times:
W for thetight construction with no cradks

B for the mnstruction with only one aad in the
plasterboard on one side of the mineral woal

W for the mnstruction with two cradks in various
distances in the plasterboards on both sides of the
mineral wodl.

Table 2 Used material characteristics

Material | Permeability | Thermal conductivity
[m?] [W.m*K™Y
plaster-
board 1.10™ 0,220
minera
woadl 1.10° 0,040

The width of the aad has been chosen as 1 mm. The
presarre difference loading the construction has been
taken as 10 Pa and the temperature difference &
35°C (the same values as in the cae of the
previously described numericd stability analysis).

The influence of the mnvedive hea transport
through the aadk has been expresed for ead
analysed construction by means of the @nvedive
linea therma transmittance acording to the
foll owing equation

W,a = - (20).

t, -1,

The linea thermal transmittance is used in 1SO and
European standards as a value showing the influence
of athermal bridge on the hed loss In this paper, the
crakk is taken as a ,convedive bridge" and the
convedive linea thermal transmittance is used to
show the influence of the ar flow through the
~convedive bridge” on the hea loss which can be
finally expressed as

Q=ZA[IJ]W+ZZV [, », D 2).

The convedive linea thermal transmittanceis aways
related to the length of the aadk and to the operating
presarre difference

The results of the onvedive linea thermal
transmittance caculation for the presare difference
of 10 Pa ae shown in Table 3 and on Fig. 4.

Table3 Theresultsof calculation

Description Convective | Air flow
linear thermal | intothe
transmittance | interior

l'I',v,lOPa \
W.miK?Y |[m’s'm?
no crack 0,009 2,9.10°
cradk on one side of

the @nstruction only 0,017 54.10°

craks on both sides

of the construction:

* oppasite eab other 0,367 20,9.10°

and in distance of:

« 50mm 0,342 208.10°

« 100mm 0,249 19,8.10°

« 200mm 0,174 19,0.10°

. 500mm 0,094 15,0.10°

- =&—one crack only
g 040 o =O—two cracks
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Fig. 4 The convectivelinear thermal
transmittance for the difference of 10 Pa



The presaure fields, the ar flow velocity fields and
the temperature fields for the tight construction, for
the nstruction with the aadk on one side of the
mineral woadl and for the anstruction with the aadks
in both plasterboards are presented on Fig. 5, Fig. 6,
Fig. 7and Fig. 8.

Note the deformations of the temperature fields
which are in the cases of untight constructions caused
by the ar flow through the aadks in mineral wodl
coverings. Such temperature deformation is visible
even in the cae of the mnstruction with the cad in
only one plasterboard (Fig. 6) and reades very
extensive level in the cae of the cnstruction with
the oppasite aadsin both coverings (Fig. 7).

The results of the simulation show that the aadks in
the cvering of the lightweight construction fill ed
with permeéable thermal insulation leal to substantial
changes in the temperature distribution and
subsequently to the cnsiderable increase in the hea
loss If the aadks are to be found on bath sides of the
construction oppcsite eab other, the amount of
037W.m'K" coud be alded under the
presumption of the operating presaure difference of
10 Pato the total hea lossfor every 1 m of the dadk
length and for every 1 K of the operating temperature
difference
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Fig. 5 The graphical presentation of theresults
for thetight construction
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Fig. 6 Thegraphical presentation of theresults
for the construction with the crack in one
plasterboard only
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Fig. 7 The graphical presentation of theresults
for the construction with the opposite
cracksin both plasterboards
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Fig. 8 The graphical presentation of theresults
for the construction with the cracksin both
plasterboardsin distance of 200 mm

CONCLUSIONS

The cmputer model ,, WIND* could be used for the
cdculation of the temperature distribution in various
types of building constructions. This work presents
its application as atod for the analysis of one typicd
lightweight wall construction.

The results of the numericd modelling show these
major conclusions:

e The modern constructions containing the
permeable therma insulation from the mineral
wool are very sendtive to the mnvedive hea
transfer.

e Any crak in the mineral wodl covering could
cause the dr flow into the thermal insulation and
subsequently the esential modificaions in the
temperature field.

e The result of such temperature distribution
deformation is the cnsiderable incresse of the
hea lossthroughthe mnstruction.
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NOMENCLATURE
A areaof construction [m?]

b one half of the width of the aadk [m]
Ca  thermal capadty of the ar [1010J.kg™.K™]

h sizeof an element in the velocity diredion
[m]
k permeability of the porous medium [m?]

Ka Lequivalent* permeability of the ar inthe
cradk [m?]

K, conductance matrix
Ky convedive hed transport matrix
Ky  boundary conditions matrix

L length of the aadk in the diredion of the air
flow [m]

I width associated with the U value [m]

ly length of the aadk asciated with the
convedive linea thermal transmittance[m]

N interpolation functions vedor
p presaure of the dr [Pa]
Oa boundary conditi ons vedor
temperature [K]
Ti vedor of unkrown temperature values [K]
T  known temperature & element boundary [K]
t interior temperature [K]
te exterior temperature [K]

U U value, thermal transmittance @efficient
[W.m?2KY

u velocity component in the x axis diredion



velocity vedor magnitude

velocity vedor of air flow [m.s”]

velocity component in the y axis diredion
velocity component normal to the boundary

mean velocity of the laminar air flow in the
crack [m.s”]

air flow rate into the interior throughthe
construction [m®.s*.m?|

weighting functions vedor

hea transfer coefficient [W.m2.K™]

The values of 8 W.m.K™ for internal surface
and 23W.m2K™? for externa surface were
used in the presented study.

convedive hea transfer coefficient [Wm?K™]
radiative hea transfer coefficient [W.m2.K™]
boundary of afinite dement

hea flow rate [W.m™]

viscosity of the ar [1,7.10° Pas)]

thermal conductivity [W.m™*.K™]

areaof afinite dement

density of the dr [1,2 kg.m™]

convedive linea thermal transmittancefor
given presaure difference[W.m1.K Y]

temperature diff erence [K]

presaure diff erence between the inlet and
the outlet of the dad [K]



